

 Navigation

 	
 index

 	
 next |

 	fuefit 0.0.6 documentation

fuefit fits engine-maps on physical parameters

[image: Development Status] [https://pypi.python.org/pypi/fuefit/] [image: Integration-build status] [https://travis-ci.org/ankostis/fuefit/builds] [image: Documentation status] [https://readthedocs.org/builds/fuefit/] [image: Latest Version in PyPI] [https://pypi.python.org/pypi/fuefit/] [image: Downloads] [https://pypi.python.org/pypi/fuefit/] [image: Issues count] [https://github.com/ankostis/fuefit/issues]

	Release:	0.0.6

	Documentation:	https://fuefit.readthedocs.org/

	Source:	https://github.com/ankostis/fuefit

	PyPI repo:	https://pypi.python.org/pypi/fuefit

	Keywords:	automotive, car, cars, consumption, engine, engine-map, fitting, fuel, vehicle, vehicles

	Copyright:	2014 European Commission (JRC-IET [http://iet.jrc.ec.europa.eu/])

	License:	EUPL 1.1+ [https://joinup.ec.europa.eu/software/page/eupl]

Fuefit is a python package that calculates fitted fuel-maps from measured engine data-points based on coefficients with physical meaning.

	1. Introduction
	1.1. Overview

	1.2. Quick-start

	2. Install
	2.1. Installing from sources (for advanced users familiar with git)

	2.2. Anaconda install

	3. Usage
	3.1. Excel usage

	3.2. Cmd-line usage

	3.3. Python usage
	3.3.1. Fitting Parameterization

	4. Contribute
	4.1. Sources & Dependencies

	4.2. Development team
	4.2.1. Contributing Authors

	5. Frequently Asked Questions
	5.1. General
	5.1.1. Can I copy/extend it? What is its License, in practical terms?

	5.2. Technical
	5.2.1. I followed the instructions but i still cannot install/run/get X. What now?

	6. API reference
	6.1. Core

	6.2. ExcelRunner

	6.3. Tests

	6.4. Module: fuefit.datamodel

	6.5. Module: fuefit.processor

	6.6. Module: fuefit.pdcalc

	6.7. Module: fuefit.excel.FuefitExcelRunner

	6.8. Module: fuefit.test.cmdline_test

	7. Changes
	7.1. Releases
	7.1.1. v0.0.6, X-X-X – Maintenance release

	7.1.2. v0.0.5, 12-Noe-2014 – 3rd public (Rosetta) release

	7.1.3. v0.0.4, 10-Noe-2014 – 2nd public (beta) release

	7.1.4. v0.0.3, 03-Noe-2014 – 1st public (beta) release

	7.1.5. v0.0.2, 28-Oct-2014 – Beta release

	7.1.6. v0.0.1, 25-Jul-2014 – Alpha release

	7.1.7. v0.0.0, 15-Apr-2014 – Alpha release

	8. Indices
	8.1. Index

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fuefit 0.0.6 documentation

1. Introduction

1.1. Overview

The Fuefit calculator was developed to apply a statistical fit on measured engine fuel consumption data
(engine map). This allows the reduction of the information necessary to describe an engine fuel map
from several hundred points to seven statistically calculated parameters, with limited loss of information.

More specifically this software works like that:

	Accepts engine data as input, constituting of triplets of RPM, Power and Fuel-Consumption
or equivalent quantities eg mean piston speed (CM), brake mean effective pressure (BMEP) or Torque,
fuel mean effective pressure (PMF).

	Fits the provided input to the following formula [1] [2] [3]:

\[\mathbf{BMEP} = (a + b\times{\mathbf{CM}} + c\times{\mathbf{CM^2}})\times{\mathbf{PMF}} +
 (a2 + b2\times{\mathbf{CM}})\times{\mathbf{PMF^2}} + loss0 + loss2\times{\mathbf{CM^2}}\]

	Recalculates and (optionally) plots engine-maps based on the coefficients
that describe the fit:

\[a, b, c, a2, b2, loss0, loss2\]

An “execution” or a “run” of a calculation along with the most important pieces of data
are depicted in the following diagram:

 .----------------------------. .-----------------------------.
 / Input-Model / / Output(Fitted)-Model /
 /----------------------------/ /-----------------------------/
 / +--engine / / +--engine /
 / | +--... / / | +--fc_map_coeffs /
 / +--params / ____________ / +--measured_eng_points /
 / | +--... / | | / | n p fc bmep ... /
 / +--measured_eng_points /==>| Calculator |==>/ | /
 / n p fc / |____________| / +--fitted_eng_points /
 / -- ---- --- / / | n p fc /
 / 0 0.0 0 / / | /
 / 600 42.5 25 / / +--mesh_eng_points /
 / / / n p fc /
 / / / /
'----------------------------' '-----------------------------'

Apart from various engine-characteristics under /engine the table-columns such as capacity and p_rated,
the table under /measured_eng_points must contain at least one column
from each of the following categories (column-headers are case-insensitive):

	Engine-speed:

N [1/min]
N_norm [-] : where N_norm = (N – N_idle) / (N_rated-N_idle)
CM [m/sec]

	Load-Power-capability:

P [kW]
P_norm [-] : where P_norm = P/P_MAX
T [Nm]
BMEP [bar]

	Fuel-consumption:

FC [g/h]
FC_norm [g/KWh] : where FC_norm = FC[g/h] / P_MAX [kW]
PMF [bar]

The Input & fitted data-model described above are trees of strings and numbers, assembled with:

	sequences,

	dictionaries,

	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html#pandas.DataFrame],

	pandas.Series [http://pandas.pydata.org/pandas-docs/dev/generated/pandas.Series.html#pandas.Series].

	[1]	Bastiaan Zuurendonk, Maarten Steinbuch(2005):
“Advanced Fuel Consumption and Emission Modeling using Willans line scaling techniques for engines”,
Technische Universiteit Eindhoven, 2005,
Department Mechanical Engineering, Dynamics and Control Technology Group,
http://alexandria.tue.nl/repository/books/612441.pdf

	[2]	Yuan Zou, Dong-ge Li, and Xiao-song Hu (2012):
“Optimal Sizing and Control Strategy Design for Heavy Hybrid Electric Truck”,
Mathematical Problems in Engineering Volume 2012,
Article ID 404073, 15 pages doi:10.1155/2012/404073

	[3]	Xi Wei (2004):
“Modeling and control of a hybrid electric drivetrain for optimum fuel economy, performance and driveability”,
Dissertation Presented in Partial Fulfillment of the Requirements
for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

1.2. Quick-start

The program runs on Python-3.3+ and requires numpy/scipy, pandas and win32 libraries
along with their native backends to be installed.

On Windows/OS X, it is recommended to use one of the following “scientific” python-distributions,
as they already include the native libraries and can install without administrative priviledges:

	WinPython [http://winpython.github.io/] (Windows only),

	Anaconda [http://docs.continuum.io/anaconda/],

	Canopy [https://www.enthought.com/products/canopy/],

Assuming you have a working python-environment, open a command-shell
(in Windows use cmd.exe BUT ensure python.exe is in its PATH)
and try the following console-commands:

	Install:	$ pip install fuefit
$ fuefit --winmenus ## Adds StartMenu-items, Windows only.

See: Install

	Cmd-line:	$ fuefit --version
0.0.6

$ fuefit --help
...

Change-directory into the `fuefit/test/` folder in the *sources*.
$ fuefit -I FuelFit_real.csv header+=0 \
 -I ./FuelFit.xlsx sheetname+=0 header@=None names:='["p","n","fc"]' \
 -I ./engine.csv file_frmt=SERIES model_path=/engine header@=None \
 -m /engine/fuel=petrol \
 -m /params/plot_maps@=True \
 -O full_results_model.json \
 -O fit_coeffs.csv model_path=/engine/fc_map_coeffs index?=false \
 -O t1.csv model_path=/measured_eng_points index?=false \
 -O t2.csv model_path=/mesh_eng_points index?=false \

See: Cmd-line usage

	Excel:	$ fuefit --excelrun ## Windows & OS X only

See: Excel usage

	Python-code:	>>> import pandas as pd
>>> from fuefit import datamodel, processor, test

>>> inp_model = datamodel.base_model()
>>> inp_model.update({...}) ## See "Python Usage" below.
>>> inp_model['engine_points'] = pd.read_csv('measured.csv') ## Pandas can read Excel, matlab, ...
>>> datamodel.set_jsonpointer(inp_model, '/params/plot_maps', True)

>>> datamodel.validade_model(inp_model, additional_properties=False)

>>> out_model = processor.run(inp_model)

>>> print(datamodel.resolve_jsonpointer(out_model, '/engine/fc_map_coeffs'))
a 164.110667
b 7051.867419
c 63015.519469
a2 0.121139
b2 -493.301306
loss0 -1637.894603
loss2 -1047463.140758
dtype: float64

See: Python usage

Tip

The commands beginning with $, above, imply a Unix like operating system with a POSIX shell
(Linux, OS X). Although the commands are simple and easy to translate in its Windows counterparts,
it would be worthwile to install Cygwin [https://www.cygwin.com/] to get the same environment on Windows.
If you choose to do that, include also the following packages in the Cygwin‘s installation wizard:

* git, git-completion
* make, zip, unzip, bzip2
* openssh, curl, wget

But do not install/rely on cygwin’s outdated python environment.

	CM

	Mean Piston Speed [https://en.wikipedia.org/wiki/Mean_piston_speed],
a measure for the engines operating speed [m/sec]

	BMEP

	Brake Mean Effective Pressure [https://en.wikipedia.org/wiki/Mean_effective_pressure],
a valuable measure of an engine’s capacity to do work that is independent of engine displacement) [bar]

	PMF

	Available Mean Effective Pressure, the maximum mean effective pressure calculated based on
the energy content of the fuel [bar]

	JSON-schema

	The JSON schema [http://json-schema.org/] is an IETF draft [http://tools.ietf.org/html/draft-zyp-json-schema-03]
that provides a contract for what JSON-data is required for a given application and how to interact
with it. JSON Schema is intended to define validation, documentation, hyperlink navigation, and
interaction control of JSON data.
You can learn more about it from this excellent guide [http://spacetelescope.github.io/understanding-json-schema/],
and experiment with this on-line validator [http://www.jsonschema.net/].

	JSON-pointer

	JSON Pointer(RFC 6901 [http://tools.ietf.org/html/rfc6901.html]) defines a string syntax for identifying a specific value within
a JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML world,
but it is much simpler.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fuefit 0.0.6 documentation

2. Install

Fuefit-0.0.6 runs on Python-3.3+, and it is distributed on Wheels [https://pypi.python.org/pypi/wheel].

Note

This project depends on the numpy/scipy, pandas and win32 python-packages
that themselfs require the use of C and Fortran compilers to build from sources.
To avoid this hussle, you can choose instead a self-wrapped python distribution like
Anaconda/minoconda, Winpython, or Canopy.

Tip

	Under Windows you can try the self-wrapped WinPython [http://winpython.github.io/] distribution,
a higly active project, that can even compile native libraries using an installations of Visual Studio,
if available (required for instance when upgrading numpy/scipy, pandas or matplotlib with pip).

Just remember to Register your WinPython installation after installation and
add your installation into PATH (see Frequently Asked Questions):

	To register it, go to Start menu ‣ All Programs ‣ WinPython ‣ WinPython ControlPanel, and then
Options ‣ Register Distribution .

	For the path, add or modify the registry string-key [HKEY_CURRENT_USEREnvironment] "PATH".

	An alternative scientific python-environment is the Anaconda [http://docs.continuum.io/anaconda/]
cross-platform distribution (Windows, Linux and OS X), or its lighter-weight alternative,
miniconda [http://conda.pydata.org/miniconda.html].

On this environment you will need to install this project’s dependencies manually
using a combination of conda and pip commands.
See requirements/miniconda.txt, and peek at the example script commands in .travis.yaml.

	Check for alternative installation instructions on the various python environments and platforms
at the pandas site [http://pandas.pydata.org/pandas-docs/stable/install.html].

See Install for more details

Before installing it, make sure that there are no older versions left over.
So run this console-command (using cmd.exe in windows) until you cannot find
any project installed:

$ pip uninstall fuefit ## Use `pip3` if both python-2 & 3 are in PATH.

You can install the project directly from the PyPi repo [https://pypi.python.org/pypi/fuefit] the “standard” way,
by typing the pip in the console:

$ pip install fuefit

	If you want to install a pre-release version (the version-string is not plain numbers, but
ends with alpha, beta.2 or something else), use additionally --pre.

	If you want to upgrade an existing installation along with all its dependencies,
add also --upgrade (or -U equivalently), but then the build might take some
considerable time to finish. Also there is the possibility the upgraded libraries might break
existing programs(!) so use it with caution, or from within a virtualenv (isolated Python environment) [http://docs.python-guide.org/en/latest/dev/virtualenvs/].

	To install an older version issue the console-command:

$ pip install fuefit=1.1.1 ## Use `--pre` if version-string has a build-suffix.

	To install it for different Python environments, repeat the procedure using
the appropriate python.exe interpreter for each environment.

	
Tip

To debug installation problems, you can export a non-empty DISTUTILS_DEBUG
and distutils will print detailed information about what it is doing and/or
print the whole command line when an external program (like a C compiler) fails.

After a successful installation, it is important that you check which version is visible in your PATH,
so type this console-command:

$ fuefit --version
0.0.6

2.1. Installing from sources (for advanced users familiar with git)

If you download the sources you have more options for installation.
There are various methods to get hold of them:

	Download and extract a release-snapshot from github [https://github.com/ankostis/fuefit/releases].

	Download and extract a sdist source distribution from PyPi repo [https://pypi.python.org/pypi/fuefit].

	Clone the git-repository at github. Assuming you have a working installation of git [http://git-scm.com/]
you can fetch and install the latest version of the project with the following series of commands:

$ git clone "https://github.com/ankostis/fuefit.git" fuefit.git
$ cd fuefit.git
$ python setup.py install ## Use `python3` if both python-2 & 3 installed.

When working with sources, you need to have installed all libraries that the project depends on.
Particularly for the latest WinPython environments (Windows / OS X) you can install
the necessary dependencies with:

$ pip install -r requirements/execution.txt .

The previous command installs a “snapshot” of the project as it is found in the sources.
If you wish to link the project’s sources with your python environment, install the project
in development mode [http://pythonhosted.org/setuptools/setuptools.html#development-mode]:

$ python setup.py develop

Note

This last command installs any missing dependencies inside the project-folder.

2.2. Anaconda install

The installation to Anaconda (ie OS X) works without any differences from the pip procedure
described so far.

To install it on miniconda environment, you need to install first the project’s native dependencies
(numpy/scipy), so you need to download the sources (see above).
Then open a bash-shell inside them and type the following commands:

$ coda install `cat requirements/miniconda.txt`
$ pip install lmfit ## Workaround lmfit-py#149
$ python setup.py install
$ fuefit --version
0.0.6

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fuefit 0.0.6 documentation

3. Usage

3.1. Excel usage

Attention

Excel-integration requires Python 3 and Windows or OS X!

In Windows and OS X you may utilize the xlwings [http://xlwings.org/quickstart/] library
to use Excel files for providing input and output to the program.

To create the necessary template-files in your current-directory, type this console-command:

$ fuefit --excel

Type fuefit --excel file_path if you want to specify a different destination path.

In windows/OS X you can type fuefit --excelrun and the files will be created in your home-directory
and the Excel will immediately open them.

What the above commands do is to create 2 files:

	FuefitExcelRunner#.xlsm

	The python-enabled excel-file where input and output data are written, as seen in the screenshot below:

[image: Screenshot of the `FuefitExcelRunner.xlsm` file.]
After opening it the first tie, enable the macros on the workbook, select the python-code at the left and click
the Run Selection as Pyhon button; one sheet per vehicle should be created.

The excel-file contains additionally appropriate VBA modules allowing you to invoke Python code
present in selected cells with a click of a button, and python-functions declared in the python-script, below,
using the mypy namespace.

To add more input-columns, you need to set as column Headers the json-pointers path of the desired
model item (see Python usage below,).

	FuefitExcelRunner#.py

	Python functions used by the above xls-file for running a batch of experiments.

The particular functions included reads multiple vehicles from the input table with various
vehicle characteristics and/or experiment coefficients, and then it adds a new worksheet containing
the cycle-run of each vehicle .
Of course you can edit it to further fit your needs.

Note

You may reverse the procedure described above and run the python-script instead:

$ python FuefitExcelRunner.py

The script will open the excel-file, run the experiments and add the new sheets, but in case any errors occur,
this time you can debug them, if you had executed the script through LiClipse [http://www.liclipse.com/],
or IPython!

Some general notes regarding the python-code from excel-cells:

	An elaborate syntax to reference excel cells, rows, columns or tables from python code, and
to read them as pandas.DataFrame [http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html#pandas.DataFrame] is utilized by the Excel .
Read its syntax at resolve_excel_ref().

	On each invocation, the predefined VBA module pandalon executes a dynamically generated python-script file
in the same folder where the excel-file resides, which, among others, imports the “sister” python-script file.
You can read & modify the sister python-script to import libraries such as ‘numpy’ and ‘pandas’,
or pre-define utility python functions.

	The name of the sister python-script is automatically calculated from the name of the Excel-file,
and it must be valid as a python module-name. Therefore:
* Do not use non-alphanumeric characters such as spaces(`), dashes(-) and dots(.`) on the Excel-file.
* If you rename the excel-file, rename also the python-file, or add this python import <old_py_file> as mypy`

	On errors, a log-file is written in the same folder where the excel-file resides,
for as long as the message-box is visible, and it is deleted automatically after you click ‘ok’!

	Read http://docs.xlwings.org/quickstart.html

3.2. Cmd-line usage

Example command:

fuefit -v\
 -I fuefit/test/FuelFit.xlsx sheetname+=0 header@=None names:='["p","rpm","fc"]' \
 -I fuefit/test/engine.csv file_frmt=SERIES model_path=/engine header@=None \
 -m /engine/fuel=petrol \
 -O ~t2.csv model_path=/fitted_eng_points index?=false \
 -O ~t2.csv model_path=/mesh_eng_points index?=false \
 -O ~t.csv model_path= -m /params/plot_maps@=True

3.3. Python usage

The most powerful way to interact with the project is through a python REPL.
So fire-up a python or ipython shell and first try to import the project just to check its version:

>>> import fuefit

>>> fuefit.__version__ ## Check version once more.
'0.0.6'

>>> fuefit.__file__ ## To check where it was installed.
/usr/local/lib/site-package/fuefit-...

If the version was as expected, take the base-model and extend it with your engine-data
(strings and numbers):

>>> from fuefit import datamodel, processor

>>> inp_model = datamodel.base_model()
>>> inp_model.update({
... "engine": {
... "fuel": "diesel",
... "p_max": 95,
... "n_idle": 850,
... "n_rated": 6500,
... "stroke": 94.2,
... "capacity": 2000,
... "bore": None, ##You do not have to include these,
... "cylinders": None, ## they are just for displaying some more engine properties.
... }
... })

>>> import pandas as pd
>>> df = pd.read_excel('fuefit/test/FuelFit.xlsx', 0, header=None, names=["n","p","fc"])
>>> inp_model['measured_eng_points'] = df

For information on the accepted model-data, check both its JSON-schema at model_schema(),
and the base_model():

Next you have to validate it against its JSON-schema:

>>> datamodel.validate_model(inp_model, additional_properties=False)

If validation is successful, you may then feed this model-tree to the fuefit.processor,
to get back the results:

>>> out_model = processor.run(inp_model)

>>> print(datamodel.resolve_jsonpointer(out_model, '/engine/fc_map_coeffs'))
a 164.110667
b 7051.867419
c 63015.519469
a2 0.121139
b2 -493.301306
loss0 -1637.894603
loss2 -1047463.140758
dtype: float64

>>> print(out_model['fitted_eng_points'].shape)
(262, 11)

Hint

You can always check the sample code at the Test-cases and in the cmdline tool fuefit.__main__.

3.3.1. Fitting Parameterization

The ‘lmfit’ fitting library [http://lmfit.github.io/lmfit-py/] can be parameterized by
setting/modifying various input-model properties under /params/fitting/.

In particular under /params/fitting/coeffs/ you can set a dictionary of coefficient-name –>
lmfit.parameters.Parameter such as min/max/value,
as defined by the lmfit library (check the default props under fuefit.datamodel.base_model() and the
example columns in the ExcelRunner).

See also

http://lmfit.github.io/lmfit-py/parameters.html#Parameters

	CM

	Mean Piston Speed [https://en.wikipedia.org/wiki/Mean_piston_speed],
a measure for the engines operating speed [m/sec]

	BMEP

	Brake Mean Effective Pressure [https://en.wikipedia.org/wiki/Mean_effective_pressure],
a valuable measure of an engine’s capacity to do work that is independent of engine displacement) [bar]

	PMF

	Available Mean Effective Pressure, the maximum mean effective pressure calculated based on
the energy content of the fuel [bar]

	JSON-schema

	The JSON schema [http://json-schema.org/] is an IETF draft [http://tools.ietf.org/html/draft-zyp-json-schema-03]
that provides a contract for what JSON-data is required for a given application and how to interact
with it. JSON Schema is intended to define validation, documentation, hyperlink navigation, and
interaction control of JSON data.
You can learn more about it from this excellent guide [http://spacetelescope.github.io/understanding-json-schema/],
and experiment with this on-line validator [http://www.jsonschema.net/].

	JSON-pointer

	JSON Pointer(RFC 6901 [http://tools.ietf.org/html/rfc6901.html]) defines a string syntax for identifying a specific value within
a JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML world,
but it is much simpler.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fuefit 0.0.6 documentation

4. Contribute

This project is hosted in github.
To provide feedback about bugs and errors or questions and requests for enhancements,
use github’s Issue-tracker [https://github.com/ankostis/fuefit/issues].

4.1. Sources & Dependencies

To get involved with development, you need a POSIX environment to fully build it
(Linux, OSX, or Cygwin on Windows).

Liclipse IDE

Within the sources there are two sample files for the comprehensive
LiClipse IDE [https://brainwy.github.io/liclipse/]:

	eclipse.project

	eclipse.pydevproject

Remove the eclipse prefix, (but leave the dot(.)) and import it as “existing project” from
Eclipse’s File menu.

Another issue is due to the fact that LiClipse contains its own implementation of Git, EGit,
which badly interacts with unix symbolic-links, such as the docs/docs, and it detects
working-directory changes even after a fresh checkout. To workaround this, Right-click on the above file
Properties ‣ Team ‣ Advanced ‣ Assume Unchanged

4.2. Development team

	Kostis Anagnostopoulos (software design & implementation)

	Georgios Fontaras (methodology inception, engineering support & validation)

4.2.1. Contributing Authors

	Stefanos Tsiakmakis

	Biagio Ciuffo

	Alessandro Marotta

Authors would like to thank experts of the SGS group for providing useful feedback.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fuefit 0.0.6 documentation

5. Frequently Asked Questions

5.1. General

5.1.1. Can I copy/extend it? What is its License, in practical terms?

I’m not a lawyer, but in a broad view, the core algorithm of the project is “copylefted” with
the EUPL-1.1+ license, and it includes files from other “non-copyleft” open source licenses like
MIT MIT License and Apache License, appropriately marked as such. So in an nutshell, you can study it,
copy it, modify or extend it, and distrbute it, as long as you always distribute the sources of your changes.

5.2. Technical

5.2.1. I followed the instructions but i still cannot install/run/get X. What now?

If you have no previous experience in python, setting up your environment and installing a new project
is a demanding, but manageable, task. Here is a checklist of things that might go wrong:

	Did you send each command to the appropriate shell/interpreter?

You should enter sample commands starting $ into your shell (cmd or bash),
and those starting with >>> into the python-interpreter
(but don’t include the previous symbols and/or the output of the commands).

	Is python contained in your PATH ?

To check it, type python in your console/command-shell prompt and press [Enter].
If nothing happens, you have to inspect PATH and modify it accordingly to include your
python-installation.

	Under Windows type path in your command-shell prompt.
To change it, run regedit.exe and modify (or add if not already there) the PATH string-value
inside the following registry-setting:

HKEY_CURRENT_USER\Environment\

You need to logoff and logon to see the changes.

Note that WinPython does not modify your path! if you have registed it, so you definetely have to
perform the the above procedure yourself.

	Under Unix type echo $PATH$ in your console.
To change it, modify your “rc’ files, ie: ~/.bashrc or ~/.profile.

	Is the correct version of python running? Of fuefit??

Certain commands such as pip come in 2 different versions python-2 & 3
(pip2 and pip3, respectively). Most programs report their version-infos
with --version.
Use --help if this does not work.

	Have you upgraded/downgraded the project into a more recent/older version?

This project is still in development, so the names of data and functions often differ from version to version.
Check the Changes for point that you have to be aware of when upgrading.

	Did you try verbose reporting for the command-line tool?

	Use -v of --vv to receive log-messages.

	Use -d to enable debug-checks.

	Did you search [https://github.com/ankostis/fuefit/issues] whether a similar issue has already been reported?

	Did you ask google for an answer??

	If the above suggestions still do not work, feel free to open a new issue and ask for help.
Write down your platform (Windows, OS X, Linux), your exact python distribution
and version, and include the print-out of the failed command along with its error-message.

This last step will improve the documentation and help others as well.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fuefit 0.0.6 documentation

6. API reference

Content below is automatically produced from docstrings in the sources, and needs more work...

6.1. Core

	pdcalc
	

	datamodel
	

	processor
	

6.2. ExcelRunner

	FuefitExcelRunner
	

6.3. Tests

	cmdline_test
	

6.4. Module: fuefit.datamodel

6.5. Module: fuefit.processor

6.6. Module: fuefit.pdcalc

6.7. Module: fuefit.excel.FuefitExcelRunner

6.8. Module: fuefit.test.cmdline_test

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fuefit 0.0.6 documentation

7. Changes

Contents

	Changes
	Releases
	v0.0.6, X-X-X – Maintenance release

	v0.0.5, 12-Noe-2014 – 3rd public (Rosetta) release

	v0.0.4, 10-Noe-2014 – 2nd public (beta) release

	v0.0.3, 03-Noe-2014 – 1st public (beta) release

	v0.0.2, 28-Oct-2014 – Beta release

	v0.0.1, 25-Jul-2014 – Alpha release

	v0.0.0, 15-Apr-2014 – Alpha release

7.1. Releases

7.1.1. v0.0.6, X-X-X – Maintenance release

	build: Untrack exclipse-project files.

	docs: Improve installation instructions and review of scientific content.

	model: Move /params/is_robust –> ./fitting/is_robust

	model: Rename fit-coefficient PMF –> BMEP.

7.1.2. v0.0.5, 12-Noe-2014 – 3rd public (Rosetta) release

	core: Use lmfit library for enforcing limits on fitted coefficients, etc.

	data: Updated Excel file with more engines.

	docs: Fix math-formulas and improve instructions.

	WARN: ExcelRunner fails on OS X.

7.1.3. v0.0.4, 10-Noe-2014 – 2nd public (beta) release

	core: FIX calclulations.

	core: Possible to specify whether to Robust-fit or not.

	core: Pin b0 coefficient to 0.

	excel: Enhance excel-runner code to support any python-code.

	excel: FIX parsing of ExcelRefs and their syntax documentation.

	test: Improve tests and Doctest code in README.

	test, ci: Use TravisCI/Anaconda Continuous-integration to check project health.

	docs: Add “API-reference” section.

	docs: Add some “Anaconda” help.

	NOTE: Various renames of modules, files and model properties.

7.1.4. v0.0.3, 03-Noe-2014 – 1st public (beta) release

	excel: Add excel-runner for running batch of experiments.

	cmd: Rename fuefitcmd –> fuefit (back again)

	cmd: Add StartMenu item in Windows.

	build: Distribute on Wheels and Docs-archive.

	build: Upload to Github/RTD/PyPi.

7.1.5. v0.0.2, 28-Oct-2014 – Beta release

	Add Excel-UI.

	cmd: Rename fuefit –> fuefitcmd

	core,model: Rename rpm_XXX –> n_XXX, etc.

	docs: Update README with excel capability, copy sections from wltp project.

	build: Stop building as EXE.

	build: Add WinPython-deps as a requirments.txt.

	Add sphinx documentation.

	Relicense from AGPL –> EUPL.

7.1.6. v0.0.1, 25-Jul-2014 – Alpha release

	Implemented algorithm using pdcalc.

	
	pdcalc: Implemented library that decides what to calculate with a topological sorting of

	required calculations from Input –> Output, ala-Excel.

	Packaged as EXE.

7.1.7. v0.0.0, 15-Apr-2014 – Alpha release

	Project administerial: README, INSTALL, setup.py mostly transcopied from wtlc

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	fuefit 0.0.6 documentation

8. Indices

	CM

	Mean Piston Speed [https://en.wikipedia.org/wiki/Mean_piston_speed],
a measure for the engines operating speed [m/sec]

	BMEP

	Brake Mean Effective Pressure [https://en.wikipedia.org/wiki/Mean_effective_pressure],
a valuable measure of an engine’s capacity to do work that is independent of engine displacement) [bar]

	PMF

	Available Mean Effective Pressure, the maximum mean effective pressure calculated based on
the energy content of the fuel [bar]

	JSON-schema

	The JSON schema [http://json-schema.org/] is an IETF draft [http://tools.ietf.org/html/draft-zyp-json-schema-03]
that provides a contract for what JSON-data is required for a given application and how to interact
with it. JSON Schema is intended to define validation, documentation, hyperlink navigation, and
interaction control of JSON data.
You can learn more about it from this excellent guide [http://spacetelescope.github.io/understanding-json-schema/],
and experiment with this on-line validator [http://www.jsonschema.net/].

	JSON-pointer

	JSON Pointer(RFC 6901 [http://tools.ietf.org/html/rfc6901.html]) defines a string syntax for identifying a specific value within
a JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML world,
but it is much simpler.

8.1. Index

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	fuefit 0.0.6 documentation

Index

 B
 | C
 | D
 | E
 | J
 | P
 | R

B

 	

 	BMEP, [1], [2]

C

 	

 	CM, [1], [2]

D

 	

 	DISTUTILS_DEBUG

E

 	

 	
 environment variable

 	

 	DISTUTILS_DEBUG

 	PATH, [1], [2], [3]

J

 	

 	JSON-pointer, [1], [2]

 	

 	JSON-schema, [1], [2]

P

 	

 	PATH, [1], [2], [3]

 	

 	PMF, [1], [2]

R

 	

 	
 RFC

 	

 	RFC 6901, [1], [2]

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

 _images/xlwings_screenshot.png
%] (L=
Hame [T e T s c@o@
¥ cut o T4 | = . . i ﬁ g Fom B X Autosum + W & Run Python Cell
B | e =t~ E - T g R
o Format Panter ER=ME A Hvers AR R S P SR
A3 - F | import fuefit “
I S R c 1ol = T+ T < 1w] ; x C " N 0T
1 Run Selection For help visit: htln ://fuefit.readthedocs.org/en/stable/usage.html#excel-usage
Debug-print. id [engine/fuel /engine/p_ma /engine/n_idle /engine/n_rat¢ /engine/stroke /engine/capac /params/fitting/coefi /engine/fuel_lhv. /paramsfis_ro /measured_
i uefit & engl petrol 125 800 6000 815 1598 -0.000000001 43000 False @engly)
TR E—
|ifuefit_version_, fuefit_updated_ eng2 petrol 58.88 800 6300 82 -0.000000001 43000 False |A3.table(header=True)
|vehs_df = mypy.read_input_as_df('D2') - eng3 petrol 92 800 6000 HRQ -0.000000001 t:se |A3.table(header=True)
s i et . = erences, 1o (=]
Eooe
n_experiments(exp_pairs) 1 g5 petrol 50.048 800 5750 S rm emll n ttm ng5!A3.table(header=True)
8 petrol 88.32 800 6000 |@eng6!A3.table(header=True)
9 eng7 petrol 50.048 800 6000 43000 False ng7!A3.table(header=True)
»Se e Pyt on-édde == w s mwgr Ok saoeoraie ebi(rescer)
1 eng9 petrol 103.04 800 5000 80 %o table(header=True)
12 amap petrol 99.9 800 2400 85.8 1598 -0.00000000]
: to Execute e R - -
14 diesel diesel 70 750 4000 82 1248 -0.000000001
15 eng_repetrol 56.7 750 6000 84 1368 -0.000000001 3
W > ¥ Input /Summary eng500 gas 2| ~astrarep . diesel 1o fevl . daimler_lat . eng_ref ~amap . bmw_avl engl ~eng2 ~eng3 en[]4 [I] Q)
Reaqy | P | Counts |EOM@ w00% O U &

_static/comment.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/plus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		fuefit 0.0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Dec 03, 2014.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

